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Abstract

We consider the problem of non-parametric Conditional Independence testing
(CI testing) for continuous random variables. Given i.i.d samples from the joint
distribution f(x, y, z) of continuous random vectors X,Y and Z, we determine
whether X ?? Y |Z. We approach this by converting the conditional independence
test into a classification problem. This allows us to harness very powerful classifiers
like gradient-boosted trees and deep neural networks. These models can handle
complex probability distributions and allow us to perform significantly better
compared to the prior state of the art, for high-dimensional CI testing. The main
technical challenge in the classification problem is the need for samples from
the conditional product distribution fCI

(x, y, z) = f(x|z)f(y|z)f(z) – the joint
distribution if and only if X ?? Y |Z. – when given access only to i.i.d. samples
from the true joint distribution f(x, y, z). To tackle this problem we propose a novel
nearest neighbor bootstrap procedure and theoretically show that our generated
samples are indeed close to fCI in terms of total variational distance. We then
develop theoretical results regarding the generalization bounds for classification for
our problem, which translate into error bounds for CI testing. We provide a novel
analysis of Rademacher type classification bounds in the presence of non-i.i.d near-
independent samples. We empirically validate the performance of our algorithm on
simulated and real datasets and show performance gains over previous methods.

1 Introduction

Testing datasets for Conditional Independence (CI) have significant applications in several statisti-
cal/learning problems; among others, examples include discovering/testing for edges in Bayesian
networks [15, 27, 7, 9], causal inference [23, 14, 29, 5] and feature selection through Markov Blan-
kets [16, 31]. Given a triplet of random variables/vectors (X,Y, Z), we say that X is conditionally
independent of Y given Z (denoted by X ?? Y |Z), if the joint distribution f

X,Y,Z

(x, y, z) factorizes
as f

X,Y,Z

(x, y, z) = f
X|Z(x|z)fY |Z(y|z)fZ(z). The problem of Conditional Independence Testing

(CI Testing) can be defined as follows: Given n i.i.d samples from f
X,Y,Z

(x, y, z), distinguish
between the two hypothesis H0 : X ?? Y |Z andH1 : X 6?? Y |Z.

In this paper we propose a data-drivenModel-Powered CI test. The central idea in a model-driven
approach is to convert a statistical testing or estimation problem into a pipeline that utilizes the power
of supervised learning models like classifiers and regressors; such pipelines can then leverage recent
advances in classification/regression in high-dimensional settings. In this paper, we take such a
model-powered approach (illustrated in Fig. 1), which reduces the problem of CI testing to Binary
Classification. Specifically, the key steps of our procedure are as follows:
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Figure 1: Illustration of our methodology. A part of the original samples are kept aside in U1. The
rest of the samples are used in our nearest neighbor boot-strap to generate a data-set U 0

2 which is
close to fCI in distribution. The samples are labeled as shown and a classifier is trained on a training
set. The test error is measured on a test set there-after. If the test-error is close to 0.5, then H0 is not
rejected, however if the test error is low thenH0 is rejected.

(i) Suppose we are provided 3n i.i.d samples from f
X,Y,Z

(x, y, z). We keep aside n of these original
samples in a set U1 (refer to Fig. 1). The remaining 2n of the original samples are processed through
our first module, the nearest-neighbor bootstrap (Algorithm 1 in our paper), which produces n
simulated samples stored in U 0

2. In Section 3, we show that these generated samples in U 0
2 are in fact

close in total variational distance (defined in Section 3) to the conditionally independent distribution
fCI

(x, y, z) , f
X|Z(x|z)fY |Z(y|z)fZ(z). (Note that only under H0 does the equality fCI

(.) =
f
X,Y,Z

(.) hold; our method generates samples close to fCI

(x, y, z) under both hypotheses).

(ii) Subsequently, the original samples kept aside in U1 are labeled 1 while the new samples simulated
from the nearest-neighbor bootstrap (in U 0

2) are labeled 0. The labeled samples (U1 with label 1 and
U 0
2 labeled 0) are aggregated into a data-set D. This set D is then broken into training and test sets

D
r

and D
e

each containing n samples each.

(iii) Given the labeled training data-set (from step (ii)), we train powerful classifiers such as gradient
boosted trees [6] or deep neural networks [17] which attempt to learn the classes of the samples.
If the trained classifier has good accuracy over the test set, then intuitively it means that the joint
distribution f

X,Y,Z

(.) is distinguishable from fCI (note that the generated samples labeled 0 are
close in distribution to fCI ). Therefore, we rejectH0. On the other hand, if the classifier has accuracy
close to random guessing, then f

X,Y,Z

(.) is in fact close to fCI , and we fail to rejectH0.

For independence testing (i.e whether X ?? Y ), classifiers were recently used in [19]. Their key
observation was that given i.i.d samples (X,Y ) from f

X,Y

(x, y), if the Y coordinates are randomly
permuted then the resulting samples exactly emulate the distribution f

X

(x)f
Y

(y). Thus the problem
can be converted to a two sample test between a subset of the original samples and the other subset
which is permuted - Binary classifiers were then harnessed for this two-sample testing; for details
see [19]. However, in the case of CI testing we need to emulate samples from fCI . This is harder
because the permutation of the samples needs to be Z dependent (which can be high-dimensional).
One of our key technical contributions is in proving that our nearest-neighbor bootstrap in step (i)
achieves this task.

The advantage of this modular approach is that we can harness the power of classifiers (in step (iii)
above), which have good accuracies in high-dimensions. Thus, any improvements in the field of
binary classification imply an advancement in our CI test. Moreover, there is added flexibility in
choosing the best classifier based on domain knowledge about the data-generation process. Finally,
our bootstrap is also efficient owing to fast algorithms for identifying nearest-neighbors [24].

1.1 Main Contributions

(i) (Classification based CI testing)We reduce the problem of CI testing to Binary Classification as
detailed in steps (i)-(iii) above and in Fig. 1. We simulate samples that are close to fCI through a
novel nearest-neighbor bootstrap (Algorithm 1) given access to i.i.d samples from the joint distribution.
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The problem of CI testing then reduces to a two-sample test between the original samples in U1 and
U 0
2, which can be effectively done by binary classifiers.

(ii) (Guarantees on Bootstrapped Samples) As mentioned in steps (i)-(iii), if the samples gener-
ated by the bootstrap (in U 0

2) are close to fCI , then the CI testing problem reduces to testing whether
the data-sets U1 and U 0

2 are distinguishable from each other. We theoretically justify that this is indeed
true. Let �

X,Y,Z

(x, y, z) denote the distribution of a sample produced by Algorithm 1, when it is sup-
plied with 2n i.i.d samples from f

X,Y,Z

(.). In Theorem 1, we prove that d
TV

(�, fCI

) = O(1/n1/d
z

)

under appropriate smoothness assumptions. Here d
z

is the dimension of Z and d
TV

denotes total
variational distance (Def. 1).

(iii) (Generalization Bounds for Classification under near-independence) The samples generated
from the nearest-neighbor bootstrap do not remain i.i.d but they are close to i.i.d. We quantify this
property and go on to show generalization risk bounds for the classifier. Let us denote the class of
function encoded by the classifier as G. Let ˆR denote the probability of error of the optimal classifier
ĝ 2 G trained on the training set (Fig. 1). We prove that under appropriate assumptions, we have

r0 �O(1/n1/d
z

)  ˆR  r0 +O(1/n1/d
z

) +O
✓p

V

✓
n�1/3

+

q
2

d

z/n

◆◆

with high probability, upto log factors. Here r0 = 0.5(1�d
TV

(f, fCI

)), V is the VC dimension [30]
of the class G. Thus when f is equivalent to fCI (H0 holds) then the error rate of the classifier is
close to 0.5. But when H1 holds the loss is much lower. We provide a novel analysis of Rademacher
complexity bounds [4] under near-independence which is of independent interest.

(iv) (Empirical Evaluation) We perform extensive numerical experiments where our algorithm
outperforms the state of the art [32, 28]. We also apply our algorithm for analyzing CI relations in the
protein signaling network data from the flow cytometry data-set [26]. In practice we observe that the
performance with respect to dimension of Z scales much better than expected from our worst case
theoretical analysis. This is because powerful binary classifiers perform well in high-dimensions.

1.2 Related Work

In this paper we address the problem of non-parametric CI testing when the underlying random
variables are continuous. The literature on non-parametric CI testing is vast. We will review some of
the recent work in this field that is most relevant to our paper.

Most of the recent work in CI testing are kernel based [28, 32, 10]. Many of these works build on
the study in [11], where non-parametric CI relations are characterized using covariance operators
for Reproducing Kernel Hilbert Spaces (RKHS) [11]. KCIT [32] uses the partial association of
regression functions relating X , Y , and Z. RCIT [28] is an approximate version of KCIT that
attempts to improve running times when the number of samples are large. KCIPT [10] is perhaps
most relevant to our work. In [10], a specific permutation of the samples is used to simulate data
from fCI . An expensive linear program needs to be solved in order to calculate the permutation.
On the other hand, we use a simple nearest-neighbor bootstrap and further we provide theoretical
guarantees about the closeness of the samples to fCI in terms of total variational distance. Finally
the two-sample test in [10] is based on a kernel method [3], while we use binary classifiers for the
same purpose. There has also been recent work on entropy estimation [13] using nearest neighbor
techniques (used for density estimation); this can subsequently be used for CI testing by estimating
the conditional mutual information I(X;Y |Z).

Binary classification has been recently used for two-sample testing, in particular for independence
testing [19]. Our analysis of generalization guarantees of classification are aimed at recovering
guarantees similar to [4], but in a non-i.i.d setting. In this regard (non-i.i.d generalization guarantees),
there has been recent work in proving Rademacher complexity bounds for �-mixing stationary
processes [21]. This work also falls in the category of machine learning reductions, where the general
philosophy is to reduce various machine learning settings like multi-class regression [2], ranking [1],
reinforcement learning [18], structured prediction [8] to that of binary classification.
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2 Problem Setting and Algorithms

In this section we describe the algorithmic details of our CI testing procedure. We first formally
define our problem. Then we describe our bootstrap algorithm for generating the data-set that mimics
samples from fCI . We give a detailed pseudo-code for our CI testing process which reduces the
problem to that of binary classification. Finally, we suggest further improvements to our algorithm.

Problem Setting: The problem setting is that of non-parametric Conditional Independence (CI)
testing given i.i.d samples from the joint distributions of random variables/vectors [32, 10, 28]. We are
given 3n i.i.d samples from a continuous joint distribution f

X,Y,Z

(x, y, z) where x 2 Rd

x , y 2 Rd

y

and z 2 Rd

z . The goal is to test whether X ?? Y |Z i.e whether f
X,Y,Z

(x, y, z) factorizes as,
f
X,Y,Z

(x, y, z) = f
X|Z(x|z)fY |Z(y|z)fZ(z) , fCI

(x, y, z)

This is essentially a hypothesis testing problem where: H0 : X ?? Y |Z andH1 : X 6?? Y |Z.

Note: For notational convenience, we will drop the subscripts when the context is evident. For
instance we may use f(x|z) in place of f

X|Z(x|z).
Nearest-Neighbor Bootstrap: Algorithm 1 is a procedure to generate a data-set U 0 consisting of
n samples given a data-set U of 2n i.i.d samples from the distribution f

X,Y,Z

(x, y, z). The data-set
U is broken into two equally sized partitions U1 and U2. Then for each sample in U1, we find the
nearest neighbor in U2 in terms of the Z coordinates. The Y -coordinates of the sample from U1 are
exchanged with the Y -coordinates of its nearest neighbor (in U2); the modified sample is added to U 0.

Algorithm 1 DataGen - Given data-set U = U1 [ U2 of 2n i.i.d samples from f(x, y, z) (|U1| =
|U2| = n ), returns a new data-set U 0 having n samples.
1: function DATAGEN(U1,U2, 2n)
2: U 0

= ;
3: for u in U1 do
4: Let v = (x0, y0, z0) 2 U2 be the sample such that z0 is the 1-Nearest Neighbor (1-NN)

of z (in `2 norm) in the whole data-set U2, where u = (x, y, z)
5: Let u0

= (x, y0, z) and U 0
= U 0 [ {u0}.

6: end for
7: end function

One of our main results is that the samples in U 0, generated in Algorithm 1 mimic samples coming
from the distribution fCI . Suppose u = (x, y, z) 2 U1 be a sample such that f

Z

(z) is not too
small. In this case z0 (the 1-NN sample from U2) will not be far from z. Therefore given a fixed z,
under appropriate smoothness assumptions, y0 will be close to an independent sample coming from
f
Y |Z(y|z0) ⇠ f

Y |Z(y|z). On the other hand if f
Z

(z) is small, then z is a rare occurrence and will
not contribute adversely.

CI Testing Algorithm: Now we introduce our CI testing algorithm, which uses Algorithm 1 along
with binary classifiers. The psuedo-code is in Algorithm 2 (Classifier CI Test -CCIT).

Algorithm 2 CCITv1 - Given data-set U of 3n i.i.d samples from f(x, y, z), returns if X ?? Y |Z.
1: function CCIT(U , 3n, ⌧,G)
2: Partition U into three disjoint partitions U1, U2 and U3 of size n each, randomly.
3: Let U 0

2 = DataGen(U2,U3, 2n) (Algorithm 1). Note that |U 0
2| = n.

4: Create Labeled data-set D := {(u, ` = 1)}
u2U1 [ {(u0, `0 = 0)}

u

02U 0
2

5: Divide data-set D into train and test set D
r

and D
e

respectively. Note that |D
r

| = |D
e

| = n.
6: Let ĝ = argmin

g2G
ˆL(g,D

r

) :=

1
|D

r

|
P

(u,`)2D
r

1{g(u) 6= l}. This is Empirical Risk
Minimization for training the classifier (finding the best function in the class G).

7: If ˆL(ĝ,D
e

) > 0.5� ⌧ , then conclude X ?? Y |Z, otherwise, conclude X 6?? Y |Z.
8: end function
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In Algorithm 2, the original samples in U1 and the nearest-neighbor bootstrapped samples in U 0
2

should be almost indistinguishable ifH0 holds. However, ifH1 holds, then the classifier trained in
Line 6 should be able to easily distinguish between the samples corresponding to different labels. In
Line 6, G denotes the space of functions over which risk minimization is performed in the classifier.

We will show (in Theorem 1) that the variational distance between the distribution of one of the
samples in U 0

2 and fCI

(x, y, z) is very small for large n. However, the samples in U 0
2 are not

exactly i.i.d but close to i.i.d. Therefore, in practice for finite n, there is a small bias b > 0 i.e.
ˆL(ĝ,D

e

) ⇠ 0.5 � b, even when H0 holds. The threshold ⌧ needs to be greater than b in order for
Algorithm 2 to function. In the next section, we present an algorithm where this bias is corrected.

Algorithm with Bias Correction: We present an improved bias-corrected version of our algorithm
as Algorithm 3. As mentioned in the previous section, in Algorithm 2, the optimal classifier may be
able to achieve a loss slightly less that 0.5 in the case of finite n, even when H0 is true. However, the
classifier is expected to distinguish between the two data-sets only based on the Y, Z coordinates, as
the joint distribution of X and Z remains the same in the nearest-neighbor bootstrap. The key idea
in Algorithm 3 is to train a classifier only using the Y and Z coordinates, denoted by ĝ0. As before
we also train another classier using all the coordinates, which is denoted by ĝ. The test loss of ĝ0 is
expected to be roughly 0.5� b, where b is the bias mentioned in the previous section. Therefore, we
can just subtract this bias. Thus, when H0 is true ˆL(ĝ0,D0

e

)� ˆL(ĝ,D
e

) will be close to 0. However,
when H1 holds, then ˆL(ĝ,D

e

) will be much lower, as the classifier ĝ has been trained leveraging the
information encoded in all the coordinates.

Algorithm 3 CCITv2 - Given data-set U of 3n i.i.d samples, returns whether X ?? Y |Z.
1: function CCIT(U , 3n, ⌧,G)
2: Perform Steps 1-5 as in Algorithm 2.
3: Let D0

r

= {((y, z), `)}(u=(x,y,z),`)2D
r

. Similarly, let D0
e

= {((y, z), `)}(u=(x,y,z),`)2D
e

.
These are the training and test sets without the X-coordinates.

4: Let ĝ = argmin

g2G
ˆL(g,D

r

) :=

1
|D

r

|
P

(u,`)2D
r

1{g(u) 6= l}. Compute test loss:
ˆL(ĝ,D

e

).
5: Let ĝ0 = argmin

g2G
ˆL(g,D0

r

) :=

1
|D0

r

|
P

(u,`)2D0
r

1{g(u) 6= l}. Compute test loss:
ˆL(ĝ0,D0

e

).
6: If ˆL(ĝ,D

e

) < ˆL(ĝ0,D0
e

)� ⌧ , then conclude X 6?? Y |Z, otherwise, conclude X ?? Y |Z.
7: end function

3 Theoretical Results

In this section, we provide our main theoretical results. We first show that the distribution of any
one of the samples generated in Algorithm 1 closely resemble that of a sample coming from fCI .
This result holds for a broad class of distributions f

X,Y,Z

(x, y, z) which satisfy some smoothness
assumptions. However, the samples generated by Algorithm 1 (U2 in the algorithm) are not exactly
i.i.d but close to i.i.d. We quantify this and go on to show that empirical risk minimization over
a class of classifier functions generalizes well using these samples. Before, we formally state our
results we provide some useful definitions.

Definition 1. The total variational distance between two continuous probability distributions f(.)
and g(.) defined over a domain X is, d

TV

(f, g) = sup

p2B|Ef

[p(X)]�E
g

[p(X)]| where B is the set
of all measurable functions from X ! [0, 1]. Here, E

f

[.] denotes expectation under distribution f .

We first prove that the distribution of any one of the samples generated in Algorithm 1 is close to fCI

in terms of total variational distance. We make the following assumptions on the joint distribution of
the original samples i.e. f

X,Y,Z

(x, y, z):

Smoothness assumption on f(y|z): We assume a smoothness condition on f(y|z), that is a
generalization of boundedness of the max. eigenvalue of Fisher Information matrix of y w.r.t z.
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Assumption 1. For z 2 Rd

z , a such that ka� zk2  ✏1, the generalized curvature matrix I
a

(z) is,

I
a

(z)
ij

=

 
@2

@z0
i

@z0
j

Z
log

f(y|z)
f(y|z0)f(y|z)dy

!�����
z

0=a

= E
"
��2 log f(y|z0)

�z0
i

�z0
j

���
z

0=a

�����Z = z

#
(1)

We require that for all z 2 Rd

z and all a such that ka � zk2  ✏1, �max

(I
a

(z))  �. Analogous
assumptions have been made on the Hessian of the density in the context of entropy estimation [12].

Smoothness assumptions on f(z): We assume some smoothness properties of the probability
density function f(z). The smoothness assumptions (in Assumption 2) is a subset of the assumptions
made in [13] (Assumption 1, Page 5) for entropy estimation.
Definition 2. For any � > 0, we define G(�) = P (f(Z)  �). This is the probability mass of the
distribution of Z in the areas where the p.d.f is less than �.
Definition 3. (Hessian Matrix) Let H

f

(z) denote the Hessian Matrix of the p.d.f f(z) with respect
to z i.e H

f

(z)
ij

= @2f(z)/@z
i

@z
j

, provided it is twice continuously differentiable at z.
Assumption 2. The probability density function f(z) satisfies the following:

(1) f(z) is twice continuously differentiable and the Hessian matrix H
f

satisfies kH
f

(z)k2  c
d

z

almost everywhere, where c
d

z

is only dependent on the dimension.

(2)
R
f(z)1�1/ddz  c3, 8d � 2 where c3 is a constant.

Theorem 1. Let (X,Y 0, Z) denote a sample in U 0
2 produced by Algorithm 1 by modifying the original

sample (X,Y, Z) in U1, when supplied with 2n i.i.d samples from the original joint distribution
f
X,Y,Z

(x, y, z). Let �
X,Y,Z

(x, y, z) be the distribution of (X,Y 0, Z). Under smoothness assumptions
(1) and (2), for any ✏ < ✏1, n large enough, we have:

d
TV

(�, fCI

)  b(n)

, 1

2

s
�

4

c3 ⇤ 21/dz

�(1/d
z

)

(n�
d

z

)

1/d
zd

z

+

�✏G (2c
d

z

✏2)

4

+ exp

✓
�1

2

n�
d

z

c
d

z

✏dz

+2

◆
+G

�
2c

d

z

✏2
�
.

Here, �
d

is the volume of the unit radius `2 ball in Rd.

Theorem 1 characterizes the variational distance of the distribution of a sample generated in Algo-
rithm 1 with that of the conditionally independent distribution fCI . We defer the proof of Theorem 1
to Appendix A. Now, our goal is to characterize the misclassification error of the trained classifier in
Algorithm 2 under both H0 and H1. Consider the distribution of the samples in the data-set D

r

used
for classification in Algorithm 2. Let q(x, y, z|` = 1) be the marginal distribution of each sample
with label 1. Similarly, let q(x, y, z|` = 0) denote the marginal distribution of the label 0 samples.
Note that under our construction,

q(x, y, z|` = 1) = f
X,Y,Z

(x, y, z) =

⇢
fCI

(x, y, z) ifH0 holds
6= fCI

(x, y, z) ifH1 holds
q(x, y, z|` = 0) = �

X,Y,Z

(x, y, z) (2)

where �
X,Y,Z

(x, y, z) is as defined in Theorem 1.

Note that even though the marginal of each sample with label 0 is �
X,Y,Z

(x, y, z) (Equation (2)),
they are not exactly i.i.d owing to the nearest neighbor bootstrap. We will go on to show that they
are actually close to i.i.d and therefore classification risk minimization generalizes similar to the
i.i.d results for classification [4]. First, we review standard definitions and results from classification
theory [4].

Ideal Classification Setting: We consider an ideal classification scenario for CI testing and in the
process define standard quantities in learning theory. Recall that G is the set of classifiers under
consideration. Let q̃ be our ideal distribution for q given by q̃(x, y, z|` = 1) = f

X,Y,Z

(x, y, z),
q̃(x, y, z|` = 0) = fCI

X,Y,Z

(x, y, z) and q̃(` = 1) = q̃(` = 0) = 0.5. In other words this is the ideal
classification scenario for testing CI. Let L(g(u), `) be our loss function for a classifying function
g 2 G, for a sample u , (x, y, z) with true label `. In our algorithms the loss function is the 0� 1

loss, but our results hold for any bounded loss function s.t. |L(g(u), `)|  |L|. For a distribution q̃
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and a classifier g let R
q̃

(g) , E
u,`⇠q̃

[L(g(u), `)] be the expected risk of the function g. The risk
optimal classifier g⇤

q̃

under q̃ is given by g⇤
q̃

, argmin

g2G R
q̃

(g). Similarly for a set of samples S
and a classifier g, let R

S

(g) , 1
|S|
P

u,`2S

L(g(u), `) be the empirical risk on the set of samples.
We define g

S

as the classifier that minimizes the empirical loss on the observed set of samples S
that is, g

S

, argmin

g2G R
S

(g).

If the samples in S are generated independently from q̃, then standard results from the learning theory
states that with probability � 1� �,

R
q̃

(g
S

)  R
q̃

(g⇤
q̃

) + C

r
V

n
+

r
2 log(1/�)

n
, (3)

where V is the VC dimension [30] of the classification model, C is an universal constant and n = |S|.
Guarantees under near-independent samples: Our goal is to prove a result like (3), for the
classification problem in Algorithm 2. However, in this case we do not have access to i.i.d samples
because the samples in U 0

2 do not remain independent. We will see that they are close to independent
in some sense. This brings us to one of our main results in Theorem 2.

Theorem 2. Assume that the joint distribution f(x, y, z) satisfies the conditions in Theorem 1.
Further assume that f(z) has a bounded Lipschitz constant. Consider the classifier ĝ in Algorithm 2
trained on the set D

r

. Let S = D
r

. Then according to our definition g
S

= ĝ. For ✏ > 0 we have:

(i) R
q

(g
S

)�R
q

(g⇤
q

)  �
n

, C|L|
  

p
V +

r
log

1

�

! ✓
log(n/�)

n

◆1/3

+

r
4

d

z

log(n/�) + o
n

(1/✏)

n

!
+G(✏)

!
,

with probability at least 1� 8�. Here V is the V.C. dimension of the classification function class, G is
as defined in Def. 2, C is an universal constant and |L| is the bound on the absolute value of the loss.

(ii) Suppose the loss is L(g(u), `) = 1
g(u)6=`

(s.t |L|  1). Further suppose the class of classifying
functions is such that R

q

(g⇤
q

)  r0 + ⌘. Here, r0 , 0.5(1 � d
TV

(q(x, y, z|1), q(x, y, z|0))) is the
risk of the Bayes optimal classifier when q(` = 1) = q(` = 0). This is the best loss that any classifier
can achieve for this classification problem [4]. Under this setting, w.p at least 1� 8� we have:

1

2

�
1� d

TV

(f, fCI

)

�
� b(n)

2

 R
q

(g
S

)  1

2

�
1� d

TV

(f, fCI

)

�
+

b(n)

2

+ ⌘ + �
n

where b(n) is as defined in Theorem 1.

We prove Theorem 2 as Theorem 3 and Theorem 4 in the appendix. In part (i) of the theorem
we prove that generalization bounds hold even when the samples are not exactly i.i.d. Intuitively,
consider two sample inputs u

i

, u
j

2 U1, such that corresponding Z coordinates z
i

and z
j

are far
away. Then we expect the resulting samples u0

i

and u0
j

(in U 0
2) to be nearly-independent. By carefully

capturing this notion of spatial near-independence, we prove generalization errors in Theorem 3. Part
(ii) of the theorem essentially implies that the error of the trained classifier will be close to 0.5 (l.h.s)
when f ⇠ fCI (underH0). On the other hand underH1 if dTV

(f, fCI

) > 1� �, the error will be
less than 0.5(� + b(n)) + �

n

which is small.

4 Empirical Results

In this section we provide empirical results comparing our proposed algorithm and other state of the
art algorithms. The algorithms under comparison are: (i) CCIT - Algorithm 3 in our paper where we
use XGBoost [6] as the classifier. In our experiments, for each data-set we boot-strap the samples and
run our algorithm B times. The results are averaged over B bootstrap runs1. (ii) KCIT - Kernel CI
test from [32]. We use the Matlab code available online. (iii) RCIT - Randomized CI Test from [28].
We use the R package that is publicly available.

1The python package for our implementation can be found here (https://github.com/rajatsen91/CCIT).

7

https://github.com/rajatsen91/CCIT


4.1 Synthetic Experiments

We perform the synthetic experiments in the regime of post-nonlinear noise similar to [32]. In our
experiments X and Y are dimension 1, and the dimension of Z scales (motivated by causal settings
and also used in [32, 28]). X and Y are generated according to the relation G(F (Z) + ⌘) where ⌘
is a noise term and G is a non-linear function, when the H0 holds. In our experiments, the data is
generated as follows: (i) when X ?? Y |Z, then each coordinate of Z is a Gaussian with unit mean
and variance, X = cos(aTZ + ⌘1) and Y = cos(bTZ + ⌘2). Here, a, b 2 Rd

z and kak = kbk = 1.
a,b are fixed while generating a single dataset. ⌘1 and ⌘2 are zero-mean Gaussian noise variables,
which are independent of everything else. We set V ar(⌘1) = V ar(⌘2) = 0.25. (ii) whenX 6?? Y |Z,
then everything is identical to (i) except that Y = cos(bTZ + cX + ⌘2) for a randomly chosen
constant c 2 [0, 2].

In Fig. 2a, we plot the performance of the algorithms when the dimension of Z scales. For generating
each point in the plot, 300 data-sets were generated with the appropriate dimensions. Half of them
are according to H0 and the other half are from H1 Then each of the algorithms are run on these
data-sets, and the ROC AUC (Area Under the Receiver Operating Characteristic curve) score is
calculated from the true labels (CI or not CI) for each data-set and the predicted scores. We observe
that the accuracy of CCIT is close to 1 for dimensions upto 70, while all the other algorithms do not
scale as well. In these experiments the number of bootstraps per data-set for CCIT was set to B = 50.
We set the threshold in Algorithm 3 to ⌧ = 1/

p
n, which is an upper-bound on the expected variance

of the test-statistic whenH0 holds.

4.2 Flow-Cytometry Dataset

We use our CI testing algorithm to verify CI relations in the protein network data from the flow-
cytometry dataset [26], which gives expression levels of 11 proteins under various experimental
conditions. The ground truth causal graph is not known with absolute certainty in this data-set,
however this dataset has been widely used in the causal structure learning literature. We take three
popular learned causal structures that are recovered by causal discovery algorithms, and we verify
CI relations assuming these graphs to be the ground truth. The three graph are: (i) consensus graph
from [26] (Fig. 1(a) in [22]) (ii) reconstructed graph by Sachs et al. [26] (Fig. 1(b) in [22]) (iii)
reconstructed graph in [22] (Fig. 1(c) in [22]).

For each graph we generate CI relations as follows: for each node X in the graph, identify the set Z
consisting of its parents, children and parents of children in the causal graph. Conditioned on this
set Z, X is independent of every other node Y in the graph (apart from the ones in Z). We use this
to create all CI conditions of these types from each of the three graphs. In this process we generate
over 60 CI relations for each of the graphs. In order to evaluate false positives of our algorithms, we
also need relations such that X 6?? Y |Z. For, this we observe that if there is an edge between two
nodes, they are never CI given any other conditioning set. For each graph we generate 50 such non-CI
relations, where an edge X $ Y is selected at random and a conditioning set of size 3 is randomly
selected from the remaining nodes. We construct 50 such negative examples for each graph. In Fig. 2,
we display the performance of all three algorithms based on considering each of the three graphs
as ground-truth. The algorithms are given access to observational data for verifying CI and non-CI
relations. In Fig. 2b we display the ROC plot for all three algorithms for the data-set generated by
considering graph (ii). In Table 2c we display the ROC AUC score for the algorithms for the three
graphs. It can be seen that our algorithm outperforms the others in all three cases, even when the
dimensionality of Z is fairly low (less than 10 in all cases). An interesting thing to note is that the
edges (pkc-raf), (pkc-mek) and (pka-p38) are there in all the three graphs. However, all three CI
testers CCIT, KCIT and RCIT are fairly confident that these edges should be absent. These edges
may be discrepancies in the ground-truth graphs and therefore the ROC AUC of the algorithms are
lower than expected.
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Figure 2: In (a) we plot the performance of CCIT, KCIT and RCIT in the post-nonlinear noise synthetic data.
In generating each point in the plots, 300 data-sets are generated where half of them are according toH0 while
the rest are according to H1. The algorithms are run on each of them, and the ROC AUC score is plotted. In (a)
the number of samples n = 1000, while the dimension of Z varies. In (b) we plot the ROC curve for all three
algorithms based on the data from Graph (ii) for the flow-cytometry dataset. The ROC AUC score for each of
the algorithms are provided in (c), considering each of the three graphs as ground-truth.

5 Conclusion

In this paper we present a model-powered approach for CI tests by converting it into binary classifi-
cation, thus empowering CI testing with powerful supervised learning tools like gradient boosted
trees. We provide an efficient nearest-neighbor bootstrap which makes the reduction to classification
possible. We provide theoretical guarantees on the bootstrapped samples, and also risk generalization
bounds for our classification problem, under non-i.i.d near independent samples. In conclusion we
believe that model-driven data dependent approaches can be extremely useful in general statistical
testing and estimation problems as they enable us to use powerful supervised learning tools.
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